

Technical Section

Carbide Grades:

BXC (P30 - P50, K25 - K40) PVD TiN coated grade for low cutting speed. Works well with a wide range of stainless steels.

BMK (K10 - K20)

Sub-micron grade with advanced PVD triple coating. Extremely high

heat resistant and smooth cutting operation, for high performance, and normal machining conditions. General purpose for all materials.

K20 (K10 - K30)

Uncoated Carbide grade for non ferrous metals, aluminum and cast iron.

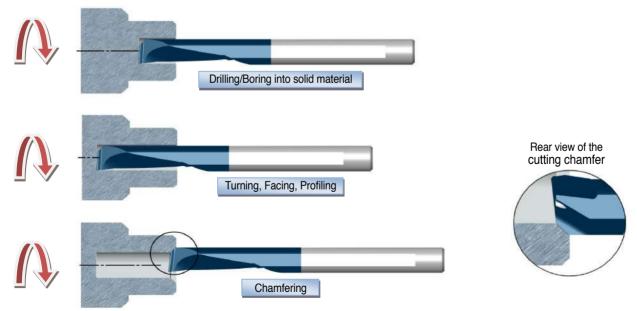
TNX

New advanced carbide grade TNX for higher feeds and high performance, at medium to high cutting speed. Extra fine grain size with high hardness and toughness combined with triple layer reddish coating, provides high edge stability and better chip flow.

Cutting speed for Tiny Tools

ISO	Material		Condition	Cutting Speed ft/min			
Standard				BXC	BMK	K20	TNX
		<0.25%C	Annealed	82-230			
	Non-Alloy steel and	≥0.25%C	Annealed		98-262		
	cast steel, free	< 0.55%C	Quenched and tempered				118-262
	cutting steel	≥0.55%C	Annealed				
Р			Quenched and tempered				
F	Low alloy steel and cast steel (less than 5% alloying elements)		Annealed	66-131	82-164		98-164
			Quenched and tempered				
	High alloy steel, cast steel, and tool steel		Annealed	66-131	82-164		98-164
			Quenched and tempered		02-104		96-104
	Stainless steel and cast steel		Ferritic/martensitic	82-131	98-197		
М			Martensitic				118–197
			Austenitic				
	Cast iron nodular (GGG)		Ferritic/pearlitic	82-197	98-262		118-262
			Pearlitic	02 107	00 202		110 202
К	Grey cast iron (GG) Malleable cast iron		Ferritic	98-230	98-262		118-262
			Pearlitic				
			Ferritic Pearlitic		66-164		79-164
			Not cureable				
	Aluminum-wrought alloy		Cured	164-328	197-394	98-164	236-394
		<=12% Si	Not cureable	131-262	164-295	66-131	197-295
	Aluminum-cast, alloyed		Cured				
Ν		>12% Si	High temperature	1			
IN	Copper alloys	>1% Pb	Free cutting	98-197	98-230	66-131	118-230
			Brass				
			Electrolytic copper				
	Non metalic		Duroplastics, fiber plastics	131-262		66-131	
			Hard rubber				
	High temp. alloys, Super alloys	Fe based	Annealed	49-98	49-131		59-131
			Cured				
S		Ni or Co	Annealed Cured				
		based	Cast				
	Titanium a	llovs	Alpha+beta alloys cured	33-98	33-98		39-98
н	Hardened steel		Hardened 45-50 HRc	33-98	00-00		33 30
			Hardened 51-55 HRc		49-131		59-131
			Hardened 56-62 HRc				
	Chilled cas		Cast	33-98	33-98		39-98
Cast iron			Hardened	33-66	33-66		39-66
Recommended Feed Rate: .0005001 inch/rev							

Threading Passes


Pitch:	mm	0.5	0.7	0.8	1.0	1.25	1.5	2-5
	TPI	48	36	32	24	20	16	14-5
Number of Passes		6-12	7-14	7-16	8-18	8-20	10-22	20-38

CMR Carmex Multi-Task Tiny Tools

- Carmex is introducing a new and innovative Multi-Task Tiny Tool **CMR** for Boring, Turning, Facing and Chamfering with a single tool.
- The unique design enables machining of the material without the need for a pilot hole.
- The new tool shortens the machining cycle time and the number of tools required providing **High Productivity**.
- Effective through coolant hole with a spiral flute, evacuates the chips out of the hole without interruptions.
- Unique chip breaker and flute design.
- For use with standard SIM toolholders on Swiss Type or CNC lathe machines.
- Available in **BMK** Grade only.

Working Method

- The tool penetrates the work piece and produces a hole compliant with the minimum diameter the tool allows.
- The tool can penetrate the material in one pass or several passes depending on the work piece material, coolant pressure, machine power etc.
- The hole can be enlarged by multi radial passes.

The tool is equipped with an additional cutting edge, which is located across the main front edge. This allows production of an additional 45° chamfer on the work piece without the need to stop the spindle or processing operation.

CMR Cutting Data and General Recommendations

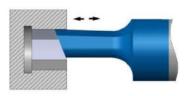
Coolant fluid

Dry machining should not be performed under any circumstances. It is necessary to use an internal coolant in all applications. Oil or Emulsion lubricants are recommended for best performance. In the event of low coolant pressure, adding an external coolant can improve the tool operation.

- The cooling stream is designed to provide three benefits:
- 1. Cooling the cutting edge of the tool, and the contact area.
- Pushing the chips away from the tool quickly, thereby reducing wear of the edge.
 Helping to break the chips into smaller pieces and evacuating them from the cutting area.

ISO Standard	Materials	Cutting Speed ft/min
	Low and Medium Carbon Steels <0.55%C	65-245
Р	High Carbon Steels ≥0.55%C	65-245
	Alloy Steels, Treated Steels	65-200
	Stainless Steels - Free Cutting	65-200
Μ	Stainless Steels - Austenitic	65-165
	Cast Steels	65-230
K	Cast Iron	65-330
	Aluminum ≤12%Si, Copper	130-490
N	Aluminum >12% Si	65-330
	Synthetics, Duroplastics, Thermoplastics	130-490
S	Nickel Alloys, Titanium Alloys	50-200
Н	Hardened Steels	-

Recommended Feed Rate: .0005 - .001 inch/rev


HK Broaching Tools for Hexagon Keys

The HK broaching system have been developed to machine internal keyways inside blind or through holes, using CNC machines.

- For use with Carmex standard SIM Bar Holders
- The holder can be located directly in the turret or the machine spindle
- Holder with rear clamping screw for full support during operation
- Available in BMK Grade only.

Working Demo

HK Cutting Data

Material Tensile Strength (Ibs/in ²)	Feed rate (inch/min)	In feed per stroke (inch)
58.000-94.000	276-354	.00240035
101.000-123.000	197-256	.00160028
130.500-145.000	157-217	.00120022
160.500-174.000	118-177	.00080016

The cutting data above is an initial recommendation and depends on the machine condition, workpiece profile and the application clamping.

- A relief groove is highly recommended. If not possible, a gradual volume decrease should be made at the end of the broaching groove.
- The HK tool must be positioned outside of the hole/groove before each stroke.
- After setup and first stroke, we recommend observing the tool and the application to make sure no collision occurs.